
Sorting and Modules

Sorting
Lists have a sort method

>>> L1 = ["this", "is", "a", "list", "of", "words"]
>>> print L1
['this', 'is', 'a', 'list', 'of', 'words']
>>> L1.sort()
>>> print L1
['a', 'is', 'list', 'of', 'this', 'words']
>>>

>>> L1 = ["this", "is", "a", "list", "Of", "Words"]
>>> print L1
['this', 'is', 'a', 'list', 'Of', 'Words']
>>> L1.sort()
>>> print L1
['Of', 'Words', 'a', 'is', 'list', 'this']
>>>

Strings are sorted alphabetically, except ...

Uppercase is sorted before lowercase (yes, strange)

ASCII order
>>> for letter in "Hello":
... print ord(letter)
...
72
101
108
108
111
10
>>>

>>> for i in range(32, 127):
... print i, "=", chr(i)
...
32 =
33 = !
34 = "
35 = #
36 = $
37 = %
38 = &
39 = '
40 = (
41 =)
42 = *
43 = +
44 = ,
45 = -
46 = .
47 = /
48 = 0
49 = 1
50 = 2
51 = 3
52 = 4
53 = 5
54 = 6
55 = 7

56 = 8
57 = 9
58 = :
59 = ;
60 = <
61 = =
62 = >
63 = ?
64 = @
65 = A
66 = B
67 = C
68 = D
69 = E
70 = F
71 = G
72 = H
73 = I
74 = J
75 = K
76 = L
77 = M
78 = N
79 = O

80 = P
81 = Q
82 = R
83 = S
84 = T
85 = U
86 = V
87 = W
88 = X
89 = Y
90 = Z
91 = [
92 = \
93 =]
94 = ^
95 = _
96 = `
97 = a
98 = b
99 = c
100 = d
101 = e
102 = f
103 = g

104 = h
105 = i
106 = j
107 = k
108 = l
109 = m
110 = n
111 = o
112 = p
113 = q
114 = r
115 = s
116 = t
117 = u
118 = v
119 = w
120 = x
121 = y
122 = z
123 = {
124 = |
125 = }
126 = ~

Sorting Numbers
Numbers are sorted numerically

>>> L3 = [5, 2, 7, 8]
>>> L3.sort()
>>> print L3
[2, 5, 7, 8]
>>> L4 = [-7.0, 6, 3.5, -2]
>>> L4.sort()
>>> print L4
[-7.0, -2, 3.5, 6]
>>>

Sorting Both
You can sort with both numbers and strings

If you do, it usually means you’ve
designed your program poorly.

>>> L5 = [1, "two", 9.8, "fem"]
>>> L5.sort()
>>> print L5
[1, 9.8000000000000007, 'fem', 'two']
>>>

Sort returns nothing!

>>> L1 = "this is a list of words".split()
>>> print L1
['this', 'is', 'a', 'list', 'of', 'words']
>>> x = L1.sort()
>>> print x
None
>>> print L1
['a', 'is', 'list', 'of', 'this', 'words']
>>>

Sort modifies the list “in-place”

>>> L1 = "this is a list of words".split()
>>> print L1
['this', 'is', 'a', 'list', 'of', 'words']

>>> L1.sort()

>>> print L1
['a', 'is', 'list', 'of', 'this', 'words']
>>>

Three steps for sorting
#1 - Get the list

#2 - Sort it

#3 - Use the sorted list

Sorting Dictionaries
Dictionary keys are unsorted

>>> D = {"ATA": 6, "TGG": 8, "AAA": 1}
>>> print D
{'AAA': 1, 'TGG': 8, 'ATA': 6}
>>>

Sorting Dictionaries

>>> D = {"ATA": 6, "TGG": 8, "AAA": 1}
>>> print D
{'AAA': 1, 'TGG': 8, 'ATA': 6}
>>> keys = D.keys()
>>> print keys
['AAA', 'TGG', 'ATA']
>>>

#1 - Get the list

>>> D = {"ATA": 6, "TGG": 8, "AAA": 1}
>>> print D
{'AAA': 1, 'TGG': 8, 'ATA': 6}
>>> keys = D.keys()
>>> print keys
['AAA', 'TGG', 'ATA']
>>> keys.sort()
>>> print keys
['AAA', 'ATA', 'TGG']
>>> for k in keys:
... print k, D[k]
...
AAA 1
ATA 6
TGG 8
>>>

#2 - Sort the list

>>> D = {"ATA": 6, "TGG": 8, "AAA": 1}
>>> print D
{'AAA': 1, 'TGG': 8, 'ATA': 6}
>>> keys = D.keys()
>>> print keys
['AAA', 'TGG', 'ATA']
>>> keys.sort()
>>> print keys
['AAA', 'ATA', 'TGG']
>>> for k in keys:
... print k, D[k]
...
AAA 1
ATA 6
TGG 8
>>>

#3 - Use the sorted list

More info

There is a “how-to” on sorting at
http://www.amk.ca/python/howto/sorting/sorting.html

Modules
Modules are collections of objects (like strings,

numbers, functions, lists, and dictionaries)

You’ve seen the math module

>>> import math
>>> math.cos(0)
1.0
>>> math.cos(math.radians(45))
0.70710678118654746
>>> math.sqrt(2) / 2
0.70710678118654757
>>> math.hypot(5, 12)
13.0
>>>

Importing a module
The import statement tells Python to find

module with the given name.

>>> import math
>>>

This says to import the module named ‘math’.

Using the new module

>>> import math
>>> math.pi
3.1415926535897931
>>>

Objects in the math module are
accessed with the “dot notation”

This says to get the variable named “pi”
from the math module.

Attributes

>>> import math
>>> math.pi
3.1415926535897931
>>> math.degrees(math.pi)
180.0
>>>

The dot notation is used for attributes, which
are also called properties.

“pi” and “degrees” are attributes (or properties)
of the math module.

Make a module
First, create a new file

In IDLE, click on “File” then select “New Window”.
This creates a new window.

In that window, save it to the file name
seq_functions.py

At this point the file is empty.

Add Python code
In the file “seq_functions.py” add the following

BASES = "ATCG"

def GC_content(s):
 return (s.count("G") + s.count("C")) / float(len(s))

Next, save this file (again).

Test it interactively
>>> import seq_functions
>>> seq_functions.BASES
'ATCG'
>>>
seq_functions.GC_content("ATCG")
0.5
>>>

Using it from a program
Create a new file called “main.py”

Add the following code
import seq_functions
print "%GC content: ", seq_functions.GC_content(seq_functions.BASES)

Run this program. You should see 0.5 printed out.

Making changes
If you edit “seq_functions.py” then you must tell

Python to reread the statements from the module.

This does not happen automatically.

We have configured IDLE to reread all the
modules when Python runs.

If you edit a file in IDLE, you must do “Run
Module” for Python to see the changes.

Assignment 30
Make a new program which asks for a
DNA sequence as input and prints the

GC content as output.

It must use the “seq_functions.py”
module to get the GC_content function.

Example output

Enter DNA sequence: AATC
%GC content: 25.0

Assignment 31
Take the count_bases function from yesterday.

Put it in the “seq_functions.py” module.

Modify your main program so it also prints
the number of bases.

Enter DNA sequence: AATC
%GC content: 25.0
A: 2
T: 1
C: 1

Assignment 32
Start with the program you have to count the

number of sequences which have a given property.

From yesterday’s exercise, these are individual
functions.

Move those functions into the seq_functions.py
module. The program output should be

unchanged.

