
Searching and Regular
Expressions

Proteins

• 20 amino acids

• Interesting structures

• beta barrel, greek key motif, EF hand ...

• Bind, move, catalyze, recognize, block, ...

• Many post-translational modifications

• Structure/function strongly influenced by
sequence

Sequence Suggests
Structure/Function

When working with tumors you find the p53 tumor antigen,
which is found in increased amounts in transformed cells.

After looking at many p53s you find that the substring
MCNSSCMGGMNRR is well conserved and has few false

(mis)matches.

If you have a new protein sequence and it has this substring
then it is likely to be a p53 tumor antigen.

Finding a string
We’ve covered several ways to find a

substring in a larger string.

site in sequence -- test if the substring site is
found anywhere in the sequence

sequence.find(site) -- find the index of the first
site in the sequence. Return -1 if not found.

sequence.count(site) -- count the number of
times site is found in the sequence (no overlaps).

Is it a p53 sequence?

>>> p53 = "MCNSSCMGGMNRR"
>>> protein = "SEFTTVLYNFMCNSSCMGGMNRRPILTIIS"
>>> protein.find(p53)
10
>>> protein[10:10+len(p53)]
'MCNSSCMGGMNRR'
>>>

p53 needs more than
one test substring

After a while you find that p53s are variable in one residue.

MCNSSCMGGMNRR
or

MCNSSCVGGMNRR

You could test for both cases, but as you add
more possibilities the number of patterns gets
really large, and writing them out is tedious.

Need a pattern
Rather than write each alternative, perhaps we can write a

pattern, which is used to describe all the strings to test.

MCNSSCMGGMNRR
or

MCNSSCVGGMNRR
MCNSSC[MV]GGMNRR

Use [] to indicate a list of residues that could match.

[FILAPVM] matches any hydrophobic residue

PROSITE
PROSITE is a database of protein patterns.

http://au.expasy.org/prosite/

The documentation for a pattern is in PRODOC.

PROSITE contains links to SWISS-PROT (a protein
sequence database) and PDB (a structure database)

ANTENNAPEDIA
'Homeobox' antennapedia-type protein signature.

[LIVMFE][FY]PWM[KRQTA]Look for a
substring which:

Starts with L, I, V, M, F, or E

ANTENNAPEDIA
'Homeobox' antennapedia-type protein signature.

[LIVMFE][FY]PWM[KRQTA]Look for a
substring which:

Starts with L, I, V, M, F, or E

Then has an F or Y

ANTENNAPEDIA
'Homeobox' antennapedia-type protein signature.

[LIVMFE][FY]PWM[KRQTA]Look for a
substring which:

Starts with L, I, V, M, F, or E

Then has an F or Y
Then the letter P

 Followed by a W
 Followed by an M

ANTENNAPEDIA
'Homeobox' antennapedia-type protein signature.

[LIVMFE][FY]PWM[KRQTA]Look for a
substring which:

Starts with L, I, V, M, F, or E

Then has an F or Y
Then the letter P

 Followed by a W
 Followed by an M

And ending with a K, R, Q, T, or A

Find ANTENNAPEDIA

Can you find [LIVMFE][FY]PWM[KRQTA] ?

 MDPDCFAMSS YQFVNSLASC YPQQMNPQQN HPGAGNSSAG GSGGGAGGSG GVVPSGGTNG
 GQGSAGAATP GANDYFPAAA AYTPNLYPNT PQPTTPIRRL ADREIRIWWT TRSCSRSDCS
 CSSSSNSNSS NMPMQRQSCC QQQQQLAQQQ HPQQQQQQQQ ANISCKYAND PVTPGGSGGG
 GVSGSNNNNN SANSNNNNSQ SLASPQDLST RDISPKLSPS SVVESVARSL NKGVLGGSLA
 AAAAAAGLNN NHSGSGVSGG PGNVNVPMHS PGGGDSDSES DSGNEAGSSQ NSGNGKKNPP
 QIYPWMKRVH LGTSTVNANG ETKRQRTSYT RYQTLELEKE FHFNRYLTRR RRIEIAHALC
 LTERQIKIWF QNRRMKWKKE HKMASMNIVP YHMGPYGHPY HQFDIHPSQF AHLSA

That’s why we have computers.

Sequences with the
ANTENNAPEDIA motif

[LIVMFE][FY]PWM[KRQTA]

Here are some sequences which contain
substrings which fit the pattern

...LHNEANLRIYPWMRSAGADR...

...PTVGKQIFPWMKES...

...VFPWMKMGGAKGGESKRTR...

Not a given residue
Suppose you know from structural reasons that
a residue cannot be a proline. You could write

[ACDEFGHIKLMNQRSTVWY]

That’s tedious, so let’s use a new notation

[^P]

This matches anything which is not a proline.
(Yes, using the ^ is strange. That’s the way it is.)

N-glycosylation site
This is the pattern for PS00001, ASN_GLYCOSYLATION

N[^P][ST][^P]

Match an N,
Then anything which isn’t a P,

Then an S or T,
And finally, anything which isn’t a P

Allow anything
Sometimes the pattern can have anything in a

given position - it just needs the proper spacing.

Could use [ACDEFGHJKLMNPQRSTVWY] but that gets
tedious. (Have you noticed how often I use that word?)

Instead, let’s make a new notation for “anything”

Let’s use the dot, “.”, so that P.P matches a proline
followed by any residue followed by a proline.

Barwin domain signature 1
The pattern is: CG[KR]CL.V.N

The substring must start with a C,
second letter must be a G,
third must be a K or R,
fourth must be a C,
fifth must be an L,
sixth may be any residue,
seventh must be a V,
eight may also be any residue,
last must be an N.

...SSCGKCLSVTNTG...

Repeats
Sometimes you’ll repeat yourself repeat yourself. For

example, a pattern may require 5 hydrophobic residues
between two well conserved regions.

You could write it as
[FILAPVM][FILAPVM][FILAPVM][FILAPVM][FILAPVM]

but that gets tedious. Again that word. And again we’ll
create a new notation. Let’s use {}s with a number inside

to indicate how many times to repeat the previous pattern.

[FILAPVM]{5}

[FILAPVM]{5}
The {}s repeat the previous pattern.

The above matches all of the following
AAAAA
AAPAP

LAPMAVAILA
VILLAMAP
LAPLAMP

And .{6} matches any string of at least length 6.

EGF-like domain
signature 1

The pattern for PS00022 is: C.C.{5}G.{2}C

Match a C, followed by any residue, followed by a C,
followed by 5 residues of any type, then a G, then 2 of any

residue type, then a C.

...VCSNEGKCICQPDWTGKDCS...

Count Ranges
Sometimes you may have a range of repeats. For

example, a loop can have 3 to 5 residues in it. All of our
patterns so far only matched a fixed number of
characters, so we need to modify the notation.

{m,n} - repeat the previous pattern at least
m times and up to n times.

For example, A{3, 5} matches AAA, AAAA, and
AAAAA but does not match AA nor AATAA.

EGF-like domain
signature 2

PS01186 is: C.C.{2}[GP][FYW].{4,8}C

Use a spacer of at least 4 residues
and up to (and including) 8 residues.

RHCYCEEGWAPPDCTTQLKA
RHCYCEEGWAPPDECTTQLKA
RHCYCEEGWAPPDEQCTTQLKA
RHCYCEEGWAPPDEQWCTTQLKA
RHCYCEEGWAPPDEQWICTTQLKA

{0, 1} ?
{0,} *
{1,} +

Short-hand versions of
counts ranges

This notation is very powerful and widely used outside of
bioinformatics. (I think research on it started in the 1950s).
Some repeat ranges are used so frequently that (to prevent
tedium, and to make things easier to read) there is special

notation for them.

“optional”
“0 or more”
“at least one”

What it means

N- and C- terminals
Some things only happen at the N- terminal (start of
the sequence) or C-terminal (end of the sequence).

We don’t have a way to say that so we need - yes, you
guessed it - more notation.

^ means the start of the sequence (a ^ inside
 of []s means “not”, outside means “start”)
$ means ends of the sequence

^examples$
^A start with an A

^[MPK] start with an M, P, or K
E$ end with an E

[QSN]$ end with a Q, S, or N

^[^P] start with anything except P

^A.*E$ start with an A and end with
an E

Neuromodulin
(GAP-43) signature 1

The pattern for PS00412 is: ^MLCC[LIVM]RR

Does match: MLCCIRRTKPVEKNEEADQE
Does not match: MMLCCIRRTKPVEKNEEADQE

Endoplasmic reticulum
targeting sequence

The pattern for PS00014 is: [KRHQSA][DENQ]EL$

Does match: ADGGVDDDHDEL
Does not match: ADGGVDDDHDELQ

Regular expressions
These sorts of patterns which match strings are called

“regular expressions”. (The name “regular” comes from a
theoretical model of how simple computers work, and

“expressions” because they are written as text.)

People don’t like saying “regular expression” all the time so
will often say “regexp”, “regex”, or “re”, or (rarely) “rx”.

Many different regexp
languages

We’ve learned a bit of the “perl5” regular expression
language. It’s the most common and is used by

Python and other languages. There’s even pcre (perl
compatible regular expressions) for C.

There are many others: grep, emacs, awk, POSIX, and the
shells all use different ways to write the same pattern.

PROSITE also has its own unique form (which I
didn’t teach because no one else uses it).

regexps in Python
The re module in Python has functions for

working with regular expressions.
>>> import re
>>>

The ‘search’ method

>>> import re
>>> text = "My name is Andrew"
>>> re.search(r"[AT]", text)

The first parameter is the pattern, as a string.
The second is the string to search.

I use a r“raw” string here. Not needed, but you
should use it for all patterns.

The Match object

>>> import re
>>> text = "My name is Andrew"
>>> re.search(r"[AT]", text)
<_sre.SRE_Match object at 0x3f8d40>

The search returns a “Match” object. Just like a file
object, there is no simple way to show it.

Using the match

>>> import re
>>> text = "My name is Andrew"
>>> re.search(r"[AT]", text)
<_sre.SRE_Match object at 0x3f8d40>
>>> match = re.search(r"[AT]", text)
>>> match.start()
11
>>> match.end()
12
>>> text[11:12]
'A'
>>>

Match a protein motif

>>> pattern = r"[LIVMFE][FY]PWM[KRQTA]"
>>> seq = "LHNEANLRIYPWMRSAGADR"
>>> match = re.search(pattern, seq)
>>> match.start()
8
>>> match.end()
14
>>>

If it doesn’t match..
The search returns nothing (the None object)

when no match was found.

>>> import re
>>> pattern = r"[LIVMFE][FY]PWM[KRQTA]"
>>> match = re.search(pattern,
"AAAAAAAAAAAAAA")
>>> print match
None
>>>

List matching patterns
>>> import re
>>> pattern = r"[LIVMFE][FY]PWM[KRQTA]"
>>> sequences = ["LHNEANLRIYPWMRSAGADR",
... "PTVGKQIFPWMKES",
... "NEANLKQIFPGAATR",
... "VFPWMKMGGAKGGESKRTR"]
>>> for seq in sequences:
... match = re.search(pattern, seq)
... if match:
... print seq, "matches"
... else:
... print seq, "does not have the motif"
...
LHNEANLRIYPWMRSAGADR matches
PTVGKQIFPWMKES matches
NEANLKQIFPGAATR does not have the motif
VFPWMKMGGAKGGESKRTR matches
>>>

Groups
Suppose an enzyme modifies a protein, and recognizes

the portion of the sequence matching
[ASD]{3,5}[LI][^P]{2,5}

The modification only occurs on the [IL] residue. I
want to know the residue of that one residue, and not

the start/end positions of the whole motif. This
requires a new notation, groups.

(groups)
Use ()s to indicate groups. The first (is the start of

the first group, the second (is the start of the second
group, etc. A group ends with the matching).

>>> import re
>>> pattern = r"[ASD]{3,5}([LI])[^P]{2,5}"
>>> seq = "EASALWTRD"
>>> match = re.search(pattern, seq)
>>> print match.start(), match.end()
1 9
>>> match.start(1), match.end(1)
4 5
>>>

Parsing with regexps
Groups are great for parsing. Suppose I have the string

Name: Andrew Age: 33

and want to get the name and the age values. I can use a
pattern with a group for each field.

Name: ([^]+) +Age: ([0123456789]+)

Dissecting that pattern
Name: ([^]+) +Age: ([0123456789]+)

One or more non-
space characters

(group 1)

Start with
“Name: ”

One or more spaces

“Age: ”

One or more digits
(group 2)

Shorthand

Name: ([^]+) +Age: (\d+)

Saying [0123456789] is tedious (again!)
There is special shorthand notation for some

of the more common sets.

Some others

\d = [0123456789]
\w = letters, digits, and the underscore

\s = “whitespace” (space, newline, tab, and a few others)

Using it
>>> import re
>>> text = "Name: Andrew Age: 33"
>>> pattern = r"Name: ([^]+) +Age: ([0123456789]+)"
>>> match = re.search(pattern, text)
>>> match.start(1)
6
>>> match.end(1)
12
>>> match.group(1)
'Andrew'
>>> match.group(2)
'33'
>>>

