
Python and Chemical
Informatics

The Daylight and OpenEye toolkits, part I

Presented by Andrew Dalke, Dalke Scientific Software
for David Wild’s I590 course at Indiana University

Feb. 23, 2005

What is Python?

• Byte-compiled high-level language

• Dynamically typed and strongly typed

• Very portable

• Easily extendable. Many platform-specific
extensions.

• See http://www.python.org/ for more
documentation and tutorials

• FORTRAN and C are fast

• Not as optimized for humans

• In the 1980s many large chemistry apps
included a domain-specific language for
“scripting” commands

• http://www.dalkescientific.com/writings/PyCon2004.html

High-level languages in
Chemistry

Some choices
• In the early 1990s Tcl arose as an embeddable,

extensible command language. Easy to embed
and extend. Simple language. Not scalable to
large project or complex data.

• Perl? Synthesis of “the unix way.” By 1997 or
so most had abandoned sh/awk/“little
language” approach. But difficult to extend
and tricky to handle complex data like
molecular graphs. “Executable line noise” and
“TMTOWTDI”

Python
First released in 1990. Based on research into how to
make programming languages easier to use. Easy to
embed and extend. Mixed OO and imperative styles

(handles complex data with ease). Both non-
programmers and software developers enjoy it.

Fewer people used it. “whitespace is significant?!”
No obvious niche. “Programming in the large.”

Python in Chemistry
I first heard of people using Python in chemistry (molecular

modeling) in 1995 or so. By 1997 I was hooked. Started
PyDaylight in 1998. Been advocating it since.

Not the only one. UCSF/CGL with Chimera. Konrad
Hinsen with MMTK.

Currently the most popular high-level language for
comp. chemistry / chemical informatics. Software

available from OpenEye, DeLano Scientific (PyMol),
CCDC (eg Relibase). Internally used at Tripos,

AstraZeneca, Vertex, Abbott and many more sites.

Starting Python
Interactive mode at the Unix prompt.
Could also use one of several IDEs.

% python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print "Hello from Python!"
Hello from Python!
>>>

“print” is a statement
Text in matching ‘single’ or

“double” quotes are strings.

A bit of math

>>> 4 + 5
9
>>> 2 * 4 + 5
13
>>> p = 9
>>> 13 * p
117
>>> q = 3 ** p
>>> q
19683
>>>

The interactive shell prints the result of
an expression (unless it returns None)

Assignment (in this case to the variable
named “p”) is not an expression

Exponentiation

>>> location = "New Mexico"
>>> print "Hello from", location
Hello from New Mexico
>>> s = "Hello from " + location
>>> print s
Hello from New Mexico
>>> s
'Hello from New Mexico'
>>>

Create a variable
named “location” with
value “New Mexico”

Can add two strings
to make a new string.

(The space is not
automatically added.)

Print adds a space
between two fields

Dynamically typed
All variables are “reference to object.” There are no

variable types. You do not need to say (and cannot say) that
a variable may only reference a string, integer, atom, etc.

>>> smiles = 8
>>> smiles = "c1ccccc1"
>>> print smiles
c1ccccc1
>>>

Strongly typed

>>> print "2" + 9
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects
>>>

“Explicit is better than implicit.”
“In the face of ambiguity, refuse the temptation to guess.”

No automatic conversion between data types
(except some numeric types like floats and integers)

Zen of Python

String methods
>>> "New Mexico".startswith("New")
1
>>> "New Mexico".startswith("Mexico")
0
>>> "New Mexico".find("Mexico")
4
>>> "New Mexico"[:4]
'New '
>>> "New Mexico"[4:]
'Mexico'
>>> "New Mexico"[4]
'M'
>>> "New Mexico".lower()
'new mexico'
>>> "New Mexico".upper()
'NEW MEXICO'
>>>

The ‘if ’ statement
>>> pH = 6.0
>>> if pH < 7.0:
... print "Acidic"
... else:
... print "Basic"
...
Acidic
>>>

Indentation is used
for code blocks

There is one code block for the “if”
and another for the “else”

More ‘if ’s, ‘and’s and ‘or’s
>>> pH = 6.0
>>> if pH < 2.0 or pH > 10.0:
... print "Don't pour it down the sink"
...
>>> pH = 7.15
>>> if 7.1 < pH and pH < 7.3:
... print "Near physiological pH"
... elif ph <= 7.1:
... print "Too acidic"
... elif pH > 7.3:
... print "Too basic"
... else:
... print "this only happens when pH == 7.3"
...
Near physiological pH
>>> if 7.1 < pH < 7.3:
... print "Another way to write the test"
...
Another way to write the test
>>>

Lists
>>> names = ["*", "H", "He", "Li", "Be"]
>>> names[2]
'He'
>>> names[:3]
['*', 'H', 'He']
>>> names[-2:]
['Li', 'Be']
>>> names[-1]
'Be'
>>> names.append("B")
>>> names.extend(["C", "N", "O", "F"])
>>> names
['*', 'H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F']
>>> names.reverse()
>>> names
['F', 'O', 'N', 'C', 'B', 'Be', 'Li', 'He', 'H', '*']
>>> names.reverse()
>>>

Indicies start with ‘0’

Negative numbers count
backwards from the end

“:” indicates a range/sublist

Dictionaries
>>> full_names = {
... "*": "unknown",
... "H": "hydrogen",
... "He": "helium",
... "Li": "lithium",
... "Be": "beryllium",
... "B": "boron",
... "C": "carbon"}
>>> full_names["C"]
'carbon'
>>> full_names.keys()
['Be', 'C', 'B', 'H', '*', 'He', 'Li']
>>> full_names.values()
['beryllium', 'carbon', 'boron', 'hydrogen', 'unknown', 'helium', 'lithium']
>>> full_names.has_key("He")
1
>>> full_names["O"]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: O
>>> full_names["O"] = "oxygen"
>>> full_names["O"]
'oxygen'
>>>

Functions
>>> def get_full_name(atomno):
... if not (0 <= atomno < len(names)):
... return "unknown"
... name = names[atomno]
... if full_names.has_key(name):
... return full_names[name]
... return "unknown"
...
>>> get_full_name(0)
'unknown'
>>> get_full_name(1)
'hydrogen'
>>> get_full_name(8)
'oxygen'
>>> get_full_name(9)
'unknown'
>>> full_names["F"] = "florine"
>>> get_full_name(9)
'florine'
>>>

Start a function
definition with “def”

This function is
named “get_full_name”.

It takes one parameter,
internally named “atomno”

The body of the function
definition is indented

“names” and “full_names” are
found as global variables

Modules
Modules are repositories of variables, functions,

classes and more.

“Namespaces are one honking great idea --
let's do more of those!”

>>> import math
>>> math.pi
3.1415926535897931
>>> math.cos(math.pi/4)
0.70710678118654757
>>> math.sqrt(2)/2
0.70710678118654757
>>>

‘for’ loops
Iterate over all elements of a list or list-like object
>>> names = ['*', 'H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F']
>>> for name in names:
... if name.startswith("H"):
... print name, "starts with an H"
... if len(name) == 1:
... print name, "has only one letter"
... if name == "O":
... break
...
* has only one letter
H starts with an H
H has only one letter
He starts with an H
B has only one letter
C has only one letter
N has only one letter
O has only one letter
>>>

Can stop early with the
“break” statement

list-like objects?
File objects are list-like - It looks like a list of lines

>>> infile = open("/usr/local/daylight/v481/data/drugs.smi")
>>>
>>> for line in infile:
... print repr(line)
...
'N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76 Strychnine\n'
'c1ccccc1C(=O)OC2CC(N3C)CCC3C2C(=O)OC cocaine\n'
'COc1cc2c(ccnc2cc1)C(O)C4CC(CC3)C(C=C)CN34 quinine\n'
'OC(=O)C1CN(C)C2CC3=CCNc(ccc4)c3c4C2=C1 lyseric acid\n'
'CCN(CC)C(=O)C1CN(C)C2CC3=CNc(ccc4)c3c4C2=C1 LSD\n'
'C123C5C(O)C=CC2C(N(C)CC1)Cc(ccc4O)c3c4O5 morphine\n'
'C123C5C(OC(=O)C)C=CC2C(N(C)CC1)Cc(ccc4OC(=O)C)c3c4O5 heroin\n'
'c1ncccc1C1CCCN1C nicotine\n'
'CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12 caffeine\n'
'C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1 vitamin a\n'
>>>

“repr” converts a string to
its Python presentation

The lines end with the newline character

SMILES file
The SMILES file format is simple

• All data fits on a single line

• There is no header line

• The first word is the SMILES string

• The second word (if it exists) is the name
or other molecule identifier

• Words are separated by whitespace

• No common definition for how to interpret
text after the 2nd word

“split” a string

>>> s = "N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76 Strychnine\n"
>>> s.split()
['N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76', 'Strychnine']
>>> s.split()[0]
'N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76'
>>> smiles, name = s.split()
>>> smiles
'N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76'
>>> name
'Strychnine'
>>>

string.split() breaks a string up into a list of the words
that were white-space separated

“tuple assignment”

Extracting the SMILES

>>> all_smiles = []
>>> for line in open("/usr/local/daylight/v481/data/drugs.smi"):
... words = line.split()
... all_smiles.append(words[0])
...
>>> len(all_smiles)
10
>>> all_smiles
['N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76',
'c1ccccc1C(=O)OC2CC(N3C)CCC3C2C(=O)OC', 'COc1cc2c(ccnc2cc1)C(O)C4CC(CC3)C(C=C)CN34',
'OC(=O)C1CN(C)C2CC3=CCNc(ccc4)c3c4C2=C1',
'CCN(CC)C(=O)C1CN(C)C2CC3=CNc(ccc4)c3c4C2=C1',
'C123C5C(O)C=CC2C(N(C)CC1)Cc(ccc4O)c3c4O5',
'C123C5C(OC(=O)C)C=CC2C(N(C)CC1)Cc(ccc4OC(=O)C)c3c4O5', 'c1ncccc1C1CCCN1C',
'CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12', 'C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1']
>>>

Get a list of all the SMILES strings that are in the file.

PyDaylight
• You’ve done a bit of toolkit programming

• Tedious - need to declare data types,
correctly use dt_dealloc, use Daylight
streams to walk through a list, and check all
return types for errors

• PyDaylight does most of that for you

• It’s a “thick” wrapper to the toolkit. See
http://daylight.com/meetings/mug99/Dalke/
http://daylight.com/meetings/mug00/Dalke/

Getting set up
PyDaylight is an extension to Python.

Python needs to know where extensions can be found.
It uses the PYTHONPATH environment variable.

This is a colon (“:”) separated path list.

I compiled PyDaylight and put it in my home directory
on xavier, under /home/adalke/local/lib/python2.2/site-packages

so you will need to do one of the following

for bash use
export PYTHONPATH=/home/adalke/local/lib/python2.2/site-packages

for csh/tcsh use
setenv PYTHONPATH /home/adalke/local/lib/python2.2/site-packages

Parsing a SMILES string

>>> from daylight import Smiles
>>> mol = Smiles.smilin("c1ccccc1O")
>>> mol
Molecule(1)
>>>

“daylight” is a module
“Smiles” is a submodule of the “daylight” module

This loads the module “daylight.Smiles” and makes it
accessible through the variable named “Smiles”

Convert the given SMILES
into a Molecule object

The Molecule has a reference to the Daylight
toolkit handle. In this case the handle’s value is 1

The Molecule class
A Molecule instance has atoms, bonds, and cycles.

A Molecule may contain 0 or more of what
a chemist would call a molecule: O.O

contains two water molecules

>>> mol
Molecule(1)
>>> mol.atoms
[Atom(3), Atom(4), Atom(5), Atom(6), Atom(7), Atom(8), Atom(9)]
>>> mol.bonds
[Bond(11), Bond(12), Bond(13), Bond(14), Bond(15), Bond(16), Bond(17)]
>>> mol.cycles
[Cycle(19)]
>>>

These numbers are the handles to
the underlying Daylight objects

Atoms and Bonds
>>> for atom in mol.atoms:
... print atom.symbol, len(atom.bonds), atom.imp_hcount, atom.aromatic
...
C 2 1 1
C 2 1 1
C 2 1 1
C 2 1 1
C 2 1 1
C 3 0 1
O 1 1 0
>>>
>>> for bond in mol.bonds:
... print bond.atoms[0].symbol, bond.symbol, bond.atoms[1].symbol, bond.bondorder
...
C ~ C 2
C ~ C 1
C ~ C 2
C ~ C 1
C ~ C 2
C ~ C 1
C - O 1
>>>

Some atom properties:
atomic symbol
list of bonds (except implicit hydrogens)
implicit hydrogen count
aromatic flag (1 if aromatic, 0 if not)

Some bond properties:
list of the two atoms
bond type (1, 2, 3, or 4) and symbol
aromatic flag (1 if aromatic, 0 if not)
bond type (Kekule)

And Cycles

>>> heroin = Smiles.smilin(
... "C123C5C(OC(=O)C)C=CC2C(N(C)CC1)Cc(ccc4OC(=O)C)c3c4O5")
>>> for cycle in heroin.cycles:
... name = aromatic_name[cycle.aromatic]
... print len(cycle.atoms), "member", name, "ring"
...
5 member nonaromatic ring
6 member nonaromatic ring
6 member nonaromatic ring
6 member nonaromatic ring
6 member aromatic ring
>>>

Cycles have a list of the atoms and
of the bonds in the cycle

Generating a SMILES

>>> heroin.cansmiles()
'CN1CCC23C4Oc5c3c(CC1C2C=CC4OC(=O)C)ccc5OC(=O)C'

>>> heroin.xsmiles()
'CN1CCC23C4OC=5C3=C(CC1C2C=CC4OC(=O)C)C=CC5OC(=O)C'

>>> uf6 = Smiles.smilin("[235U](F)(F)(F)(F)(F)F")
>>> uf6.cansmiles()
'F[U](F)(F)(F)(F)F'
>>> uf6.cansmiles(1)
'F[235U](F)(F)(F)(F)F'

Molecules have a “cansmiles” method
which returns a canonical SMILES string

“xsmiles” returns the Kekule form

Both take an option ‘iso’ flag to include isomeric
labeling (atomic weight and chirality)

cansmiles
Convert all SMILES from a file into canonical form

>>> from daylight import Smiles
>>> for line in open("/usr/local/daylight/v481/data/drugs.smi"):
... smiles = line.split()[0]
... mol = Smiles.smilin(smiles)
... print mol.cansmiles()
...
O=C1CC2OCC=C3CN4CCC56C4CC3C2C6N1c7ccccc75
COC(=O)C1C2CCC(CC1OC(=O)c3ccccc3)N2C
COc1ccc2nccc(C(O)C3CC4CCN3CC4C=C)c2c1
CN1CC(C=C2C1CC3=CCNc4cccc2c34)C(=O)O
CCN(CC)C(=O)C1CN(C)C2Cc3c[nH]c4cccc(C2=C1)c34
CN1CCC23C4Oc5c3c(CC1C2C=CC4O)ccc5O
CN1CCC23C4Oc5c3c(CC1C2C=CC4OC(=O)C)ccc5OC(=O)C
CN1CCCC1c2cccnc2
Cn1cnc2n(C)c(=O)n(C)c(=O)c12
CC(=CCO)C=CC=C(C)C=CC1=C(C)CCC1(C)C
>>>

Error Handling
Not all strings are SMILES strings

>>> Smiles.smilin("Not a SMILES string")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/home/adalke/local/lib/python2.2/site-packages/daylight/Smiles.py", line 59, in smilin
 raise daylight.BadFormat, msg
daylight.BadFormat: ERROR: Invalid input: t (dy_parse_smiles)

PyDaylight converts Daylight’s error codes into
Python exceptions which can be caught and dealt with
>>> import daylight
>>> try:
... Smiles.smilin("QQQ")
... except daylight.DaylightError:
... print "It didn't like that"
...
It didn't like that
>>>

See the Python
documentation for

details on using
exceptions

Simple filtering
Suppose you want the SMILES strings in a SMILES

file which the molecule does not contain a nitrogen

>>> from daylight import Smiles
>>> for line in open("/usr/local/daylight/v481/data/drugs.smi"):
... smiles = line.split()[0]
... mol = Smiles.smilin(smiles)
... for atom in mol.atoms:
... if atom.number == 7:
... break # found a nitrogen so break out of the loop
... else: # this is an 'else' to the 'for' statement
... # only get here if there was no 'break' in the loop
... print smiles
...
C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1
>>>

SMARTS searches
Most substructure searches are more

complicated than testing for only a single atom.
“How many carboxyl groups are in heroin?”

>>> from daylight import Smiles, Smarts
>>> carboxyl = Smarts.compile("C(=O)O")
>>> carboxyl
SmartsObject(637)
>>> heroin = Smiles.smilin(
... "C123C5C(OC(=O)C)C=CC2C(N(C)CC1)Cc(ccc4OC(=O)C)c3c4O5")
>>> matches = carboxyl.match(heroin)
>>> len(matches)
2
>>>

Import both Smiles and Smarts modules

“Compile” the SMARTS
pattern into an object

The terms “compile” and “match”
were picked to match Python’s “re” module

Match failures
A SMARTS match() returns Python’s None object

if there are no matches

>>> mol = Smiles.smilin("C")
>>> matches = carboxyl.match(mol)
>>> print matches
None
>>>

Match successes
On success the returned MatchObject is a list of
paths. Each path has a list of atoms and bonds.

>>> mol = Smiles.smilin("c1cccnc1O")
>>> pat = Smarts.compile("[n,c]cO")
>>> for path in pat.match(mol):
... for atom in path.atoms:
... print atom.symbol,
... print
...
C C O
N C O
>>>

Nitrogen counts
This prints the number of nitrogens in each molecule.

>>> from daylight import Smiles, Smarts
>>> nitrogen = Smarts.compile("[#7]")
>>> for line in open("/usr/local/daylight/v481/data/drugs.smi"):
... smiles = line.split()[0]
... matches = nitrogen.match(Smiles.smilin(smiles))
... if matches is None:
... print 0, smiles
... else:
... print len(matches), smiles
...
2 N12CCC36C1CC(C(C2)=CCOC4CC5=O)C4C3N5c7ccccc76
1 c1ccccc1C(=O)OC2CC(N3C)CCC3C2C(=O)OC
2 COc1cc2c(ccnc2cc1)C(O)C4CC(CC3)C(C=C)CN34
2 OC(=O)C1CN(C)C2CC3=CCNc(ccc4)c3c4C2=C1
3 CCN(CC)C(=O)C1CN(C)C2CC3=CNc(ccc4)c3c4C2=C1
1 C123C5C(O)C=CC2C(N(C)CC1)Cc(ccc4O)c3c4O5
1 C123C5C(OC(=O)C)C=CC2C(N(C)CC1)Cc(ccc4OC(=O)C)c3c4O5
2 c1ncccc1C1CCCN1C
4 CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12
0 C1C(C)=C(C=CC(C)=CC=CC(C)=CCO)C(C)(C)C1
>>>

match return None when
there are no matches.
‘is’ is mostly used for
checking for None. It

is not the same as “==”

[#7] matches [N,n]

Structure Editing
Replace an oxygen with a sulpher

>>> mol = Smiles.smilin("c1ccccc1O")
>>> mol.atoms[-1].number
8
>>> mol.atoms[-1].number = 16
>>> mol.atoms[-1].number
8
>>>

Doesn’t work like you might expect.

The ‘mod’ flag
Molecules can only be modified if the ‘mod’ flag is set.

>>> mol.mod
0
>>> mol.mod = 1
>>> mol.atoms[-1].number = 16
>>> mol.atoms[-1].number
16
>>> mol.cansmiles()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/home/adalke/local/lib/python2.2/site-packages/daylight/Molecule.py", line
116, in cansmiles
 raise DaylightError, "cannot make canonical smiles when mod is on"
daylight.DaylightError: cannot make canonical smiles when
mod is on
>>> mol.mod = 0
>>> mol.cansmiles()
'Sc1ccccc1'
>>>

But can only generate a SMILES
string when the mod flag is off

Building acetic acid
atom by atom and bond by bond

>>> from daylight import Molecule, Bond
>>> mol = Molecule.Molecule()
>>> mol.mod = 1
>>> C1 = mol.addatom(6)
>>> C2 = mol.addatom(6)
>>> O1 = mol.addatom(8)
>>> O2 = mol.addatom(8)
>>> C1.imp_hcount = 3
>>> Bond.add(C1, C2)
Bond(6)
>>> Bond.add(C2, O1, 2)
Bond(7)
>>> Bond.add(C2, O2, 1)
Bond(8)
>>> O2.imp_hcount = 1
>>> mol.mod = 0
>>> mol.cansmiles()
'CC(=O)O'
>>>

Make 2 carbons
and 2 oxygens

Make it a [CH3]

By default this adds a single bond

Specify the single bond

This adds a double bond

Make it an [OH]

Delete an atom or bond
Use the “dealloc” function in the “daylight” module
>>> mol = Smiles.smilin("c1ccccc1O")
>>> mol.mod = 1
>>> daylight.dealloc(mol.atoms[-1])
1
>>> mol.mod = 0
>>> mol.cansmiles()
'[c]1ccccc1'
>>>

It’s [c] because I forgot to adjust the implicit hydrogen
count on the carbon that was attached to the oxygen

>>> mol.mod = 1
>>> mol.atoms[-1].imp_hcount += 1
>>> mol.mod = 0
>>> mol.cansmiles()
'c1ccccc1'
>>>

The 1 means the
deallocation succeeded

Deletes can be tricky
I want to delete the 5th atom. Why doesn’t this work?
>>> mol = Smiles.smilin("c1ccccc1O")
>>> mol.mod = 1
>>> daylight.dealloc(mol.atoms[4])
1
>>> mol.mod = 0
>>> mol.cansmiles()
Exception daylight.DaylightError: <daylight.DaylightError instance at
0x81e2cb4> in <bound method smart_ptr.__del__ of smart_ptr(1)> ignored
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/home/adalke/local/lib/python2.2/site-packages/daylight/Molecule.py",
line 115, in cansmiles
 assert self.mod == 1, "dt_cansmiles returned None but mod
is off?"
AssertionError: dt_cansmiles returned None but mod is off?

The final chemistry isn’t correct. In this case the
implicit hydrogen counts of the neighboring atoms
must be adjusted based on the old bond orders

Structure cleanup

• remove salts

• adjust charge states

• normalize chemistry

• determine how to handle tautomers

New structures often need to be cleaned up.
(“registered”)

Full registration is very complex.

Removing salts
Here’s one algorithm that mostly works.

DON’T USE IT - it fails too often

Get the SMILES string and split on the “.”. This gives each of the
chemical compounds. The non-salt has the longest SMILES.

>>> filename = “/usr/local/daylight/v481/contrib/src/applics/clusterview/data.smi”
>>> for line in open(filename):
... sizes = []
... smiles = line.split()[0]
... for smi in smiles.split("."):
... sizes.append((len(smi), smi))
... sizes.sort()
... print sizes[-1][1]
...

Make a list that can be sorted by length.
Sort and pull out the longest SMILES

Better removal
Instead of using the longest SMILES string

convert each into a Molecule and use the atom counts.

THIS CAN STILL FAIL

Sometimes the salt is larger than the compound.
Sometimes the salt *is* the compound.

Need to be careful.

Fixing chemistry
Different people have different notions of how to

make chemistry fit the covalent graph model

C

OO

C

OO-

+

A carboxylic group might be sketched (correctly) in
either of these two forms. Need to pick one and

convert the other form into this one.

Could use SMARTS and
molecular editing

If a molecule matches the carboxylic SMARTS pattern
then change the charge on match atom 1 (the carbon) by -1

and change the charge on match atom 2 (the O-) by +1
and make the bond between atoms 1 and 2 a double bond

Feasible, and used in some companies

http://www.daylight.com/meetings/mug99/Kenny/kenny_mug99.htm

SMIRKS
SMIRKS is a concise language for representing reactions.

>>> from daylight import Smirks, Smiles
>>> t = Smirks.compile("[C+:1]([O-:2])[O:3]>>[C:1](=[O:2])[O:3]")
>>> mol = Smiles.smilin("C[C+]([O-])O")
>>> results = t.transform([mol])
>>> results
[Reaction(183)]
>>> results[0].product.cansmiles()
'CC(=O)O'
>>>

See http://www.daylight.com/dayhtml_tutorials/languages/smirks/

Exercise 1- compute_mw
Make a function called “compute_mw” which computes

the molecular weight for a given SMILES string.

The function will start like this: def compute_mw(smiles):

PyDaylight includes molecular weight data in its
Elements module

>>> from daylight import Elements
>>> Element.byNumber(8).mass
15.999000000000001

Remember to include the implicit hydrogen count.

Exercise 2 - explore
the NCI data set

Using the NCI SMILES data set as converted by CACTVS,
How many ...

1. ... SMILES are in the data set?
2. ... could not be processed by Daylight?
3. ... contain more than 30 atoms?
4. ... contain sulphers?
5. ... contain atoms other than N, C, O, S, and H?
6. ... contain more than one molecule in the SMILES?
7. ... have a chain of at least 15 atoms?
8. ... have more than 3 aromatic ring systems?

Exercise 3 - salts

How many different salts are in the NCI data set? List
them as canonical SMILES.

How did you define which was a salt?

As I recall, at least one record has a salt which is larger
than the compound. Find it, or show that I misremember.

Exercise 4 - atom
deletion

Write a program that takes a SMILES string and atom position and deletes
the atom at that position. It must fix the implicit hydrogen counts on what

was the neighboring atoms.

The result may break a molecule into several molecules. (Eg, breaking
“CCCC” in the second position creates “C” and “CC”). Print each

molecule on its own line.

To get the SMILES and index from the command-line you may use

import sys

if len(sys.argv) != 3:
 raise SystemExit(”must give SMILES string and index”)
smiles = sys.argv[1]
index = int(sys.argv[2])

